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Abstract

Learned image compression has achieved great success
due to its excellent modeling capacity, but seldom further
considers the Rate-Distortion Optimization (RDO) of each
input image. To explore this potential in the learned codec,
we make the first attempt to build a neural data-dependent
transform and introduce a continuous online mode decision
mechanism to jointly optimize the coding efficiency for each
individual image. Specifically, apart from the image content
stream, we employ an additional model stream to generate
the transform parameters at the decoder side. The pres-
ence of a model stream enables our model to learn more
abstract neural-syntax, which helps cluster the latent repre-
sentations of images more compactly. Beyond the transform
stage, we also adopt neural-syntax based post-processing
for the scenarios that require higher quality reconstructions
regardless of extra decoding overhead. Moreover, the in-
volvement of the model stream further makes it possible to
optimize both the representation and the decoder in an on-
line way, i.e. RDO at the testing time. It is equivalent to a
continuous online mode decision, like coding modes in the
traditional codecs, to improve the coding efficiency based
on the individual input image. The experimental results
show the effectiveness of the proposed neural-syntax de-
sign and the continuous online mode decision mechanism,
demonstrating the superiority of our method in coding effi-
ciency. Our project is available at: https://dezhao-
wang.github.io/Neural-Syntax-Website/.

1. Introduction
Image compression is one of the most fundamental tech-

nologies since human society has entered the digital infor-

mation age. It becomes more and more important when

currently the big data applications meet the constantly in-
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Figure 1. Three transform paradigms. (a) Single transform

adopted in previous end-to-end trained image compression meth-

ods. (b) Cluster-specified transform utilized in conventional image

codecs. (c) Proposed data-dependent transform. In our method,

the transform is generated based on the input sample. By model-

ing the distribution in a local manifold, we derive a more compact

transform and make the decoder more powerful and flexible.

creased visual experience demand, e.g. high-resolution

visual applications like 8K streaming and Virtual Real-

ity (VR). Continuous endeavors are made to obtain highly

efficient compressed and high-quality images/videos that

can be stored, displayed, and analyzed with limited hard-

ware resources.

In recent decades, a series of codecs have been devel-

oped to optimize the reconstruction quality (i.e. distortion)

with bit-rate constraints (rate) jointly, which forms the core

problem of lossy compression: rate-distortion optimiza-
tion (RDO). It perfectly describes the key aspects of human

needs for a large amount of images/videos: maximizing re-

construction quality leads to preserving the critical visual

information of the image signal; whereas minimizing the

bit-rate benefits the efficient transmission and storage.

The mainstream image compression standards and sys-

tems, e.g. JPEG [31] and BPG [14] based on HEVC [30],

adopt the route of transform/hybrid coding framework for

RDO. The framework consists of cascaded transform, quan-

tization and entropy coding. The elaborate designs of these

components lead to higher coding efficiency. Among these

efforts, there are two important directions. One branch of

researches focus on designing more powerful transforms,

e.g. the improved variants [3, 29, 33] of discrete cosine

17379



transform (DCT) [9, 14], and the theoretically optimal lin-

ear Karhunen-Loève Transform (KLT) [34]. Although more

decorrelated and energy-compact coefficients are obtained

to improve the coding performance, these methods heav-

ily rely on the distribution, and therefore are not general

and flexible enough. The other branch of works pay atten-

tion to fully capturing the properties of the input samples.

These methods introduce syntax elements to project the im-

age signals into a specific subspace, e.g. intra-prediction

based on different directions, where more compact repre-

sentations can be naturally obtained and related processing

can be more data-dependent. However, the syntax and cor-

responding subspace are manually predefined, e.g. the di-

rectional modes of intra-prediction, which leads to limited

performance gains and leaves less space for future improve-

ment.

With the rapid development of deep learning, the pros-

perity of end-to-end optimized image compression meth-

ods is witnessed. In these methods, the whole neural

codecs [5, 6] (including encoders and decoders) are totally

learned from a large collection of high-quality images. Via

optimizing the rate-distortion (R-D) cost over the large-

scale training set, the encoders provide flexible and pow-

erful nonlinear neural transforms.

However, existing end-to-end optimized compression

methods seldom pay attention to the model’s adaptivity to

handle images with diverse contexts or distributions. The

training only leads to an average low R-D cost on the

training set. For a given input sample, the codec might

not be good at capturing the input’s probability proper-

ties and fail to provide an optimal transform during the

inference stage. Some insights in traditional codecs bring

in new inspirations. First, transforms can be totally data-

dependent [15, 20, 28] instead of using fixed weights. Sec-

ond, syntax might be very useful to simplify the distribution

of the encoded coefficients via an implicit subspace parti-

tion.

To address the above-mentioned issues and inspired by

the useful insights from traditional codecs, we make the

first attempt to build a neural data-dependent transform for

learned image compression. Our new model aims to gener-

ate transform parameters dynamically based on the informa-

tion of the input sample. To this end, apart from the image

content stream, our model additionally introduces neural-
syntax as the model stream to generate transform parame-

ters at the decoder side. The neural-syntax describes the

rough contexts of images/features and therefore can make

the distribution of the encoded coefficients more compact.

We also introduce the neural-syntax into a post-processing

network which targets further enhancing the reconstruction

quality when computation and time budgets are sufficient.

With the aid of neural-syntax, our model can be online op-

timized towards achieving better R-D performance on the

given input sample. Similar to traditional codecs that tra-

verse and select the best coding mode, we introduce a con-

tinuous online mode decision mechanism, optimizing the

model stream codes on the input sample, to further improve

the coding efficiency. The experiments demonstrate the su-

periority of our method. More ablation studies and analyses

show the effectiveness of each designed module as well as

the rationality of our motivations and interpretations.

Our contributions are summarized as follows,

• We make the first attempt to build a neural data-

dependent transform for learned image compression.

The transform enables the decoder to be more power-

ful and flexible, offering superior R-D performance.

• We propose a new joint paradigm to optimize the con-

tent and model streams simultaneously, with the aid

of neural-syntax in an end-to-end image compression

framework.

• The encoded coefficients of neural-syntax are online

optimized over input samples with a continuous on-

line mode decision to further improve the coding effi-

ciency.

2. Related Work
2.1. Hybrid Image Compression

Conventional image compression schemes follow the hy-

brid/transform coding paradigm. JPEG [31] utilizes Dis-

crete Cosine Transform (DCT) to make the transformed co-

efficients compact for bit-rate reduction and decorrelated

for efficient entropy coding. Advanced hybrid codecs, e.g.
HEVC [30] and VVC [9], add more types of transforms,

e.g. Discrete Sine Transform (DST) [3,22], to handle differ-

ent types of residual signals. Specifically, Multiple Trans-

form Selection (MTS) is introduced in VVC to select the

most desirable transform with the best rate-distortion per-

formance. Data-driven transforms like KLT have also been

explored for image compression [34], where multiple KLT

candidates are trained from different clusters of multi-scale

patches. Inspired by the idea of signal-dependent transform

selection in previous image coding methods, our model

adopts end-to-end learned neural networks to generate data-

dependent transforms for more efficient image compres-

sion. Different from existing hybrid codecs, all compo-

nents in our model, including neural transforms, are trained

in an end-to-end manner, and the discrete transform selec-

tion is extended into a more flexible continuous mode deci-

sion process. These two characteristics lead to more com-

pact representations and improved R-D performance in our

method.

2.2. Deep Image Compression

In recent years, with the surge of deep learning tech-

niques, more attention has been paid to end-to-end image
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compression. Ballé et al. first utilized Convolutional Neural

Network (CNN) to establish a compressive auto-encoder for

lossy image compression [5,6] and inspired a lot of learned

image compression methods [10,25,26]. With the help of a

new proposed Generalized Discrete Normalization (GDN),

the convolutional analysis and synthesis transforms learn

to reduce the redundancy of image signal effectively. Be-

sides the transform, numerous researches are dedicated to

entropy coding on the latent representations based on the

learned probability models, i.e. hyper-prior [7], 2D context

model [21, 24] and 3D context model [12] . Besides, Gaus-

sian Mixture Model (GMM) and attention module-based

transforms [13] have been shown to further improve image

compression performance.

Despite the evolution of learned image compression

transforms and entropy models, existing methods still adopt

data-independent encoding and decoding transforms. Once

the training is done, the parameters of the transforms are

fixed for all input images. Such transforms face challenges

when handling diversified image signals. Wang et al. [32]

used ensemble learning to compress images with the se-

lected models from a model pool, and achieved an im-

proved performance. In this work, we explore to adopt the

data-dependent transforms in the learned image compres-

sion framework. Beyond selecting a desired transform from

a hand-crafted pool, our method dynamically generates the

transform for each input in an end-to-end manner. Further-

more, we generalize the discrete mode decision to a contin-

uous version, which is more flexible to be online optimized

and offers better R-D performance.

3. Neural Data-Dependent Transform
3.1. Formulation and Motivation

In this section, we formulate several coding schemes.

With a unified formulation, the proposed model is com-

pared with the existing end-to-end learned image compres-

sion and the hybrid coding framework to unveil our motiva-

tions clearly. The core idea of our formulation is illustrated

in Fig. 2.

Conventional Learned Compression Framework. Most

end-to-end learned image compression methods follow the

transform coding paradigm. As shown in Fig. 2 (a), the dis-

crete latent representation ẑ is extracted by applying a trans-

form ga(·) to an input image x, followed by a quantization

Q(·) as follows,

z = ga(x), ẑ = Q(z). (1)

The quantization step in Fig. 2 is omitted for brevity.

Then ẑ is entropy coded by an entropy coder (EC) with

a predefined prior probability distribution or advanced en-

tropy models, e.g. hyper-prior or context models. The bit-

stream b is generated by the entropy coding, and it is loss-

b
ga EC gs

gt git

(a) Conventional E2E Coding Framework

(b) Hybrid Coding Framework

(c) Proposed E2E Coding Framework

ED

gpre

ga

x

x

ga EC ED
, bc , bs

EDEC
bs

bc

x

zR

)( | ˆssg z

)( | ˆssg z

( )ˆ|agg sg z

Figure 2. Key ideas with related formulations of image compres-

sion. (a) Previous learned image compression. (b) Hybrid coding

framework. (c) Our dual-stream learned image compression with

the data-dependent transform. The red lines denote the streams of

syntax/neural-syntax. gs (·|ẑs) denotes that the process gs is pa-

rameterized by ẑs.

lessly decoded by a symmetrical Entropy Decoder (ED).

The process is denoted as follows,

b = EC(ẑ), ẑ = ED(b). (2)

The decoded ẑ is then fed to a synthesis transform gs(·), i.e.
a neural decoder, to obtain the final reconstructed output x̂
as follows,

x̂ = gs(ẑ). (3)

Note that this kind of compression framework is gener-

ally similar to JPEG in formulation and therefore it in-

evitably inherits JPEG’s limitations. Though existing meth-

ods achieve considerably improved performance with the

power of large-scale data and the strong modeling capac-

ity of learned nonlinear transforms [4], their flexibility and

adaptivity might be questionable as it is difficult for the

transforms to capture the specific properties of input sam-

ples.

Advanced Hybrid Coding Framework. Beyond the trans-

form coding scheme, modern coding standards, e.g. HEVC

or VVC, adopt the hybrid coding scheme combining trans-

form coding and predictive coding. This coding scheme

naturally introduces syntax elements, e.g. intra prediction

modes, partition maps, and transform modes. Such ele-

ments are formed by the encoder by analyzing the image

signal and selecting the best candidate based on R-D per-

formance. For simplicity, such analysis is denoted as an

overall pre-processing function gpre(·), which produces the

residue component (after prediction) and the syntax compo-

nent respectively in the whole bit-stream as follows,

{ẑs, zR} = gpre(x), (4)

where ẑs is the to-be-entropy-coded representation of syn-

tax elements and zR is the to-be-transformed content infor-

mation (usually residues). Transforms gt(·) (such as DCT)

17381



with quantization Q(·) are applied to zR for energy com-

paction, decorrelation and entropy reduction as follows,

zc = gt(zR), ẑc = Q(zc). (5)

To provide a uniform formulation, gpre(·) and gt(·) can be

merged into an abstract integrated analysis function ga(·).
The input of ga(·) is the uncompressed image and the output

is {ẑs, ẑc}. Therefore, we have,

{ẑs, ẑc} = ga(x). (6)

After that, both ẑc and ẑs are entropy coded, transmitted,

and decoded in turn as follows,

bs = EC(ẑs), ẑs = ED(bs), (7)

bc = ED(ẑc), ẑc = ED(bc), (8)

where bc and bs represent the bit-stream of content informa-

tion and syntax information, respectively.

To reconstruct the decoded image, ẑc is sent to the in-

verse transform git(·), like Inverse DCT (IDCT), to recon-

struct spatial domain representation ẑR. The process can be

denoted as,

ẑR = git(ẑc). (9)

An aggregation component that is symmetrical to gpre(·),
denoted as gagg(·), is applied to reconstruct the image sig-

nal. In this step, the syntax ẑs and reconstructed residue

ẑR are aggregated, where ẑs serves as a part of parameters

in gagg(·) to control the condition of ẑR to reconstruct the

image. We denote the process as follows:

x̂ = gagg(ẑR|ẑs). (10)

Taking the decoder transform as a whole, the overall synthe-

sis function gs(·) is controlled by the syntax information to

first decode and then map ẑc into the reconstructed signal,

as

x̂ = gs(ẑc|ẑs). (11)

The evolution of hybrid image coding naturally leads to

data-dependent transforms. However, the merits of hybrid

image coding and end-to-end image learned compression

are never met. Therefore, it is much anticipated to construct

a learned compression method with a neural data-dependent

transform.

Proposed Dual-Stream Learned Compression Frame-
work. Inspired by the evolution of hybrid coding, we aim

to design an image compression framework with end-to-

end learned data-dependent transforms, as shown in Fig. 2

(c). Similar to end-to-end learned frameworks, our pipeline

consists of an analysis transform as the encoder, an entropy

codec, and a synthesis transform as the decoder. The trans-

forms (modules) are all differentiable, so that they can be

optimized in an end-to-end manner. Besides, the proposed

framework differs from existing learning-based ones in the

following three aspects.

• Encoding: the analysis transform generates not only the

content representation but also neural-syntax representation

as follows,

{ẑs, ẑc} = ga(x), (12)

where ẑs and ẑc represent content information and syntax

information, respectively. The disentangled neural-syntax

is similar to syntax elements in hybrid coding. The intro-

duced (neural-)syntax is capable of capturing abstract con-

text information of the images/representations, which helps

project the encoded representation into a subspace where

the transform coefficients are more compact.

• Entropy Model: our entropy model differs from existing

ones, where two latent representations, i.e. ẑs and ẑc are

separately coded. We compress them into two streams,

bc = EC(ẑc), bs = EC(ẑs), (13)

where bc and bs are the compressed bit-streams of ẑc and ẑs,

respectively. The separation of the bit-stream enables finer-

grained control of the coding process. For example, we can

online optimize the syntax stream based on the R-D per-

formance of the input sample. Symmetrically, the entropy

decoding is applied to the two streams,

ẑc = ED(bc), ẑs = ED(bs). (14)

We encode and decode ẑs and ẑc with the help of the hyper-

prior and context model, omitted here for simplicity.

• Data-dependent Decoding: the proposed decoding func-

tion is data-dependent. For different input images x, we

obtain different neural-syntax ẑs to generate a more spe-

cific decoding transform for the input sample. We denote

the synthesis transform as gs(·) parameterized by ẑs as,

x̂ = gs(ẑc|ẑs). (15)

Finally, we can optimize the whole pipeline in an end-to-

end manner based on the rate-distortion trade-off, denoted

as,

L = D(x, x̂) + λ(R(ẑc) +R(ẑs) +R(ẑh)), (16)

where D(·, ·) is the distortion metric and R(·) measures the

bit-rate. ẑh represents the hyper-prior of ẑs and ẑc. λ is the

hyper-parameter to trade-off between rate and distortion.

3.2. Network Design

3.2.1 Overall Structure

The overall network structure is shown in Fig. 3(a). We

adopt an end-to-end image compression framework with
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Figure 3. Pipeline and detailed network structures of the proposed dual-stream image compression framework with the neural data-

dependent transform.

hyper-prior [7] and context model [21, 24] for entropy es-

timation as our baseline. Beyond the baseline, we intro-

duce a data-dependent transform with the help of neural-

syntax/model stream, where the related stream flow is de-

noted by red lines in Fig. 3(a). Specifically, the encoder

network generates the latent representations from the input

image. The latent representations are split on the channel

dimension to form the content stream and model stream, i.e.
neural-syntax. The content stream, corresponding to ẑc in

Eq. (12), is quantized and entropy coded with the estimated

probability from the combination of a context model and

hyper-prior. With the combination, the estimated probabil-

ity is inferred with the fused information from both already

coded symbols via the context model and transmitted hyper-

prior. We follow existing works [7, 16, 21, 24] to model the

likelihoods with Gaussian distributions, where the probabil-

ity model generates the mean and scale of a Gaussian distri-

bution to calculate the cumulative density function and like-

lihoods. The likelihoods are directly used during encoding

and decoding processes by the arithmetic coder.

For the other branch after the split, a neural-syntax gen-

erator extracts a compact, discrete, and one-dimension rep-

resentation vector from the model stream, corresponding to

ẑs in Eq. (12). The neural-syntax is entropy coded with the

hyper-prior based probability model. As the neural-syntax

contains no spatial information, the context model is not ap-

plied. The decoded syntax information is fed into a weight

generator network, which predicts the kernel parameters of

the last convolutional layer of the decoder. This layer maps

the decoded feature maps to the reconstructed image.

3.2.2 Neural-Syntax/Model Stream

We design a syntax generator network to leverage multi-

scale redundancy to better extract the syntax information, as
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Figure 4. Data-dependent transform based Decoder. The trans-

form parameters (i.e. the convolution kernels of the last layer) are

conditioned on the input image.

shown in Fig. 3(b). We design a multi-scale network struc-

ture to extract neural-syntax ẑs. The feature maps of each

scale are mapped into a one-dimension latent vector with

a global average pooling operation. After that, the pooled

features are concatenated together. The mechanism of ap-

plying pooling on the feature pyramid not only makes full

use of multi-scale redundancy but also leads to the scale-

invariant neural-syntax. Therefore, it enables the compres-

sion for variable-resolution images. The latent vector is

quantized and entropy coded in the entropy bottleneck, con-

ditioned on the same hyper-prior as the latent representation

of images. After that, a multi-layer fully-connected net-

work is utilized to map the neural-syntax representations

to kernel parameters of the ultimate layer in the decoder

network. These dynamically-generated parameters improve

the modeling flexibility of the network at the inference stage

to adapt to diversified input images.

The proposed neural-syntax facilitates data-dependent

transforms that decode each image with different convolu-

tion kernel parameters. The decoder is composed of five

transposed convolutional layers, with the inverse-GDN in

between, as shown in Fig. 4. Parameters of all but the last

layer are fixed after the training process. The last convo-
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Figure 5. R-D curves on Kodak and CLIC Professional Validation Set.
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Figure 6. Visual results compared to BPG [14], ICLR 2019 [21] and VTM 4:4:4 [11]. The patch is cropped from kodim14 in Kodak [19].

lutional layer contains only kernel parameters without bias

weights. These parameters are generated on-the-fly at the

decoding time from the weight generator. Since the pa-

rameters of the decoder are dynamically generated, they are

highly dependent on the input image and can fully capture

the specific properties of the input image. Therefore, the

model’s adaptivity to handle diversified images is largely

improved and better reconstructed images are obtained.

3.2.3 Neural-Syntax based Post-processing

We also design a post-processing module for the scenarios

that require higher quality reconstructions. As the param-

eter number of the proposed decoder is limited, it cannot

fully exploit the information retained by the bitstream. To

this end, we add a post-processing module with higher com-

plexity to further enhance the original reconstructions. We

adopt state-of-the-art Super-resolution methods HAN [27]

as our backbone but remove the upsampler and replace the

final convolutional layer with our dynamically generated

weights. Experimental results show that by applying post-

processing, the reconstruction quality can further improve

by a considerable margin and outperform state-of-the-art

codecs like VVC.

3.3. Continuous Mode Decision

As mentioned above, the split of the bit-stream naturally

brings in the potential to finetune the model/neural-syntax

stream online at the inference stage. More specifically, the

decoding transform can be further optimized based on the

R-D trade-off loss function on the input image. The pro-

cess is equivalent to the mode decision process in the con-

ventional hybrid coding framework that selects the best one

from the discrete candidates. The online optimization of our

decoder is more flexible which chooses the best one contin-

uously from an infinite set.

It has been proposed in [23] to online finetune the neu-

ral network based encoder for each input image. Such an

approach searches for a better representation of the image

based on the fixed decoder and has been shown to achieve

better performance. However, due to the restriction that any

extra updates on the decoder side should be encoded and

transmitted through the channel, these methods can only ad-

just encoder parameters while the decoder is fixed. Thus,

the degrees of freedom in finetuning are limited.

With the aid of our proposed dual-stream compression

framework, the proposed approach addresses this limita-

tion by manipulating neural-syntax in the bit-stream. In our

framework, a part of the decoder parameters are determined

by the encoded representation, which can be optimized at

the inference stage. The optimization is formulated as fol-

lows,

θ̂a = argmin
θa

{D(gs (ga(x; θa)|fsyn(x; θsyn); θs) , x)

+ λR(ga(x; θa))},

where x denotes the to-be-encoded image, and we fix the

decoder parameters θs and syntax generator parameters

θsyn that are not dependent on the input. We optimize the
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encoder parameters θa with R-D trade-off loss function to

simultaneously search for the optimal content stream and

neural-syntax stream. It should be noted that, besides θs, the

decoder also includes generated parameters fsyn(x; θsyn),
where fsyn(·) is the abstract syntax generator. The involve-

ment of parts of the decoder parameters provides more flex-

ible optimization and leads to more significant performance

improvement.

4. Experimental Results

4.1. Implementation

1) Network Implementation. Specifically, we implement

the neural-syntax model on the basis of existing end-to-end

learning based image compression methods [21, 24], where

the context model and the hyper-prior are employed. The

detailed structure and hyper parameters of the networks are

shown in the supplementary material. Note that the channel

width of most convolutional layers is set as N , as well as

the bottleneck width. The first M channels of the bottle-

neck latent representation are extracted as syntax informa-

tion. The remaining (N -M ) channels correspond to content

feature maps. For models trained under different ranges of

bit-rates, the hyper parameters are slightly changed. Models

for lower ranges of bit-rates are constructed with N = 192
and M = 16. Those for higher ranges of bit-rates have

N = 384 and M = 32, to provide enough information ca-

pacity. Our post-processing network is based on HAN [27].

Specifically, we use 4 residue groups for lower bit-rate mod-

els and 6 for higher bit-rate models. We remove the up-

sampler and use the decoded neural-syntax to generate the

weights of the final convolutional layer, which is similar to

our decoder. Details of our post-processing network are also

provided in the supplementary material.

2) Training Details. We use DIV2K [2] image set as our

training dataset. The dataset is composed of 800 natural im-

ages of 2K resolutions on average. To make the model adapt

to images of different resolutions, we down-sample the im-

ages to half of their resolutions as the augmentation of the

training data. During training, we randomly crop 256×256
patches from each image and form a batch of eight patches.

Our training procedure consists of two stages: 1) train-

ing the compression network (including encoder, neural-

syntax based decoder and entropy model) and 2) training

the neural-syntax based post-processing. We fix the weights

of the compression network in stage II.

In stage I, we train our models for 5,000 epochs with

the Adam optimizer [18]. The learning rate is initialized to

be 1×10−4 and turned down to its half after 4,000, 4,500

and 4,750 epochs. Our models are optimized by the rate-

distortion trade-off loss function, defined in Eq. (16). Mean

Square Error (MSE) is used as the distortion measurement.

We train our models with λ in {8×10−4, 1.5×10−3, 2.5×

Table 1. BD-rate results (↓) on Kodak [19] and CLIC Professional

Validation dataset [1]. We set BPG [14] as the anchor in the calcu-

lation. ‘Ours’ and ‘Ours+’ represent our proposed method without

and with post-processing, respectively. The best results are shown

in bold and the second best are underlined.

Kodak CLIC

NeurIPS 2018 [24] -4.9% -6.2%

ICLR 2019 [21] -5.7% -10.6%

VTM 4:2:0 2020 [11] -9.7% -14.3%

VTM 4:4:4 2020 [11] -20.7% -26.5%

CVPR 2020 [13] -18.3% -22.6%

TPAMI 2021 [17] -13.8% -19.5%

Ours -14.5% -25.3%

Ours+ -20.1% -29.7%

10−3, 8× 10−3, 1.5× 10−2, 2× 10−2}.

In stage II, we train additional post-processing networks

for 1500 epochs. We still adopt Adam optimizer and set the

learning rate to 1×10−4, which is turned down to its half

and quarter after 1200 and 1350 epochs, respectively. The

loss function is MSE as the bit-rate will not change.

Our method applies the continuous mode decision. For

each image, based on the pre-trained network weights, we

additionally employ the Adam optimizer with a learning

rate 1×10−5 to finetune the encoder for 100 iterations. We

observe a decrease in R-D loss during finetuning, corre-

sponding to the improvement in compression performance.

3) Evaluation Protocol. We evaluate our method on Kodak

image set [19] and the professional subset in the CLIC val-

idation dataset [1]. The Kodak image set consists of 24 im-

ages, all with resolutions 768×512. The evaluation of CLIC

validation dataset reveals the performance of the proposed

method on images of higher resolutions, i.e. 1803×1175 on

average. The performance is measured by both bit-rates and

distortions. We present the bit-rate in bit-per-pixel (bpp)

and distortion in Peak Signal to Noise Ratio (PSNR). The

R-D curves and BD-rate [8] are illustrated to compare dif-

ferent methods and settings.

4.2. Quantitative Comparison

We compare our method with existing end-to-end

learned image compression methods optimized for MSE [7,

13, 17, 21, 24]1 and conventional transform-based codecs,

i.e. JPEG [31], BPG [14] and VVC [9]. Specifically for

VVC, we use reference software VTM 8.0 [11] with chroma

format 4:2:0 and 4:4:4 in the evaluation. The overall results

on Kodak and CLIC Professional validation sets are shown

in Fig. 5 (a) and (b). We also compare the BD-rates of these

methods anchored on BPG, which are shown in Table 1.

‘Ours+’ in Fig. 5 and Table 1 represents our method with

1For NeurIPS 2018, we evaluate the released models based on the mean

and scale hyper-prior but without the auto-regressive context model.
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neural-syntax based post-processing. Here, we use continu-

ous mode decision (i.e. online finetuning strategy) for both

‘Ours’ and ‘Ours+’. Results without continuous mode de-

cision are shown in Fig. 5 (c).

As illustrated in Fig. 5 (a) and (b), our MSE-oriented

models without post-processing can already outperform re-

cent end-to-end learned image compression methods like

[17] as well as advanced conventional codecs such as VTM

4:2:0 and BPG. On CLIC, compared to the state-of-the-art

learning-based method [13], we can even save more bit-

rates at the same distortion level though we do not use

attention-based transforms and Gaussian Mixture Model for

entropy estimation. Once we increase the complexity of our

model by applying post-processing, our method can sur-

pass [13] and even VTM 4:4:4. Specifically, our models

save about 20.1% BD-rate on Kodak and 29.7% on CLIC

compared to BPG. When compared to the most advanced

codec VTM, our method only slightly drops 0.6% on Ko-

dak. While on CLIC, we can improve the BD-rate perfor-

mance by about 3%, demonstrating the effectiveness of our

method.

4.3. Qualitative Comparison

We also compare our method to other codecs in visual

quality. The results are shown in Fig. 6. Due to the quanti-

zation, high-frequency components in the image signal are

lost in the BPG and VTM 4:4:4 reconstruction results. They

also suffer from blocking artifacts. Compared to the base-

line model [21], our method preserves more details. Specifi-

cally, the vertical edges in Fig. 6 are blurred more seriously

after being compressed by the baseline model, while our

method reconstructs the edges better. More visual results

are provided in the supplementary material.

4.4. Ablation Study

1) Effectiveness of Neural-syntax. To verify the effective-

ness of our proposed neural-syntax, we compare the pro-

posed method with a baseline model without the neural-

syntax, i.e. the context model-based end-to-end learned

compression framework [21] on Kodak. Note that the on-

line finetuning based continuous mode decision mechanism

is not enabled in this experiment for a fair comparison. The

results are illustrated in Fig. 5 (c), where Ours w/o on-
line finetune and ICLR 2019 are compared. As shown, our

model surpasses the baseline by a large margin, correspond-

ing to 9.17% in BD-rate. The results illustrate the effective-

ness of the proposed neural-syntax mechanism.

2) Effectiveness of Continuous Mode Decision. We pro-

pose to finetune the encoder together with the neural-syntax

controlled decoder layer to enable continuous mode deci-

sion. In this experiment, we online finetune the encoder

parameters for each image at the encoding time. Such fine-

tuning makes the encoder and the decoder better adapt to the

Table 2. Complexity and Performance comparison among our pro-

posed method, the baseline method [21] and the state-of-the-art

method [13]. BD-rates are anchored on our baseline, i.e., ICLR

2019 [21].

Method #Param
BD-rate (↓)

Kodak CLIC

ICLR 2019 [21] 100% 0% 0%

CVPR 2020 [13] 175% -12.8% -12.4%

Ours 101% -9.5% -16.5%

Ours+ 125% -15.5% -21.7%

input image content. We compare the R-D performances of

the proposed models on Kodak when switching the contin-

uous mode decision on and off. The comparison is illus-

trated in Fig. 5 (c), corresponding to Ours(+) w/o online
finetune and Ours(+) w/ online finetune settings. With con-

tinuous mode decision, the model is capable of further de-

creasing the BD-rate by 2.35% on average. It should be

noted that, without online finetuning, our neural-syntax can

already achieve considerable performance gain. Therefore,

the additional performance improvement brought by con-

tinuous mode decision is non-trivial.

3) Complexity Analyses on Neural-syntax and Post-
processing. In previous sections, we have already demon-

strated the effectiveness of the neural-syntax and post-

processing. Here we further show the complexity compari-

son among our models (including ‘Ours’ and ‘Ours+’), the

baseline model [21] and the state-of-the-art learning-based

method [13]2 in Table 2. In Table 2, we can find that our

neural-syntax is rather light-weighted that only increases

the parameter number by 1%. Compared to [13], we use

fewer parameters to achieve better performance on CLIC.

And after applying the neural-syntax based post-processing,

we can outperform [13] on both Kodak and CLIC despite

the fact that our parameters are still fewer.

Results on MS-SSIM-oriented models can be found in

our supplementary material, where we provide more visual

comparison and ablation studies.

5. Conclusion

In this paper, we explore the data-dependent transforms

in end-to-end learned image compression. We propose the

end-to-end trained neural-syntax to provide more flexibil-

ity in the compression of diverse images. The neural-syntax

mechanism also enables continuous mode decision at the in-

ference time, allowing a further improvement in R-D perfor-

mance when compressing each image. Experimental results

demonstrate the effectiveness of the neural-syntax mecha-

nism and the superior R-D performance.

2To make the comparison fair, here we use the pytorch implementa-

tion in https://github.com/LiuLei95/PyTorch-Learned-
Image-Compression-with-GMM-and-Attention to align the

platform.
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